Performance measures of the tomographic classifier fusion methodology

نویسندگان

  • David Windridge
  • Josef Kittler
چکیده

We seek to quantify both the classification performance and estimation error robustness of the authors’ tomographic classifier fusion methodology by contrasting it in field tests and model scenarios with the sum and product classifier fusion methodologies. In particular, we seek to confirm that the tomographic methodology represents a generally optimal strategy across the entire range of problem dimensionalities, and at a sufficient margin to justify the general advocation of its use. Final results indicate, in particular, a near 25% improvement on the next nearest performing combination scheme at the extremity of the tested dimensional range.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion Framework for Emotional Electrocardiogram and Galvanic Skin Response Recognition: Applying Wavelet Transform

Introduction To extract and combine information from different modalities, fusion techniques are commonly applied to promote system performance. In this study, we aimed to examine the effectiveness of fusion techniques in emotion recognition. Materials and Methods Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy female students (mean age: 22.73±1.68 years) were collected ...

متن کامل

Classifier selection for majority voting

Individual classification models are recently challenged by combined pattern recognition systems, which often show better performance. In such systems the optimal set of classifiers is first selected and then combined by a specific fusion method. For a small number of classifiers optimal ensembles can be found exhaustively, but the burden of exponential complexity of such search limits its prac...

متن کامل

Uncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1

In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...

متن کامل

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

A Morphologically Optimal Strategy for Classifier Combination: Multiple Expert Fusion as a Tomographic Process

We specify an analogy in which the various classifier combination methodologies are interpreted as the implicit reconstruction, by tomographic means, of the composite probability density function spanning the entirety of the pattern space, the process of feature selection in this scenario amounting to an extremely bandwidth-limited Radon transformation of the training data. This metaphor, once ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJPRAI

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2005